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Wharton Behavioral Lab  
Guidelines for Increasing Statistical Power and Choosing Sample Sizes1 

 
1. Null hypothesis statistical tests (NHSTs) are still the norm for most academic research, 

even though most statisticians, research methodologists, and academic journals encourage 
researcher to focus more on effect sizes (e.g., the size of specific differences between means 
and the confidence intervals around those means; see Appelbaum, et al. 2018; Cohen 1994; 
Fritz, Morris, & Richler 2012; Wilkinson 1999)2.  Thus, it is important to understand the 
relationships among effect sizes, NHSTs, sample size, and statistical power.  A NHST 
assumes that the null hypothesis is true and estimates the probability that the observed effect 
size will occur when the true effect size is exactly zero; this probability is called the p-value.  
The purpose of a NHST is to evaluate whether there is evidence for the alternative 
hypothesis; by choosing a threshold such that we consider there to be evidence if the p-value 
is less than .05, we decrease the risk of making a Type I error (i.e., concluding that an effect 
exists when it does not) to .05.  The purpose of computing statistical power is to assess the 
risk of making a Type II error (i.e., concluding that an effect does not exist when it does).   
Given decisions about expected effect sizes and acceptable levels of risk for making Type I 
and Type II error, it is possible to estimate the sample size necessary to meet those criteria. 

 
 Statistical power, f, is usually defined as the probability that a "true" effect will be detected 

by the "rejection" of a NHST, and 80% is a frequent benchmark for sufficient power.  
Statistical power is a function of  

 
 (1) the statistical model used to generate the NHST (usually Y is a linear function of X, and 

either or both may be vectors for each observation),  
 
 (2) the estimation method used to fit that model to observed data (usually least-squares or 

maximum likelihood),  
 
 (3) the p-value, or a, that is used as the criterion for the NHST (usually a = .05; thus, Type I 

Error is usually required to be 4 times smaller than Type II Error, which is 20% for f = 80%),  
 
 (4) the size of the effect, ES, which might be expressed in units of the dependent variable per 

unit of independent variable (e.g., b for standardized coefficients and B for unstandardized 
coefficients, respectively) or more abstractly in standard deviations of the error term (e.g., 
Cohen's d), and  

 

                                                
1 This research note was prepared by Wes Hutchinson, Wharton School, University of Pennsylvania, November 12, 
2018.  Much thanks to Professors Paul Rosenbaum, Dylan Small, and Joe Simmons for comments on an earlier 
version of these guidelines.  Useful books on this topic included Bailar and Hoaglin (2009) and Murphy, Myors, and 
Wolach (2014). 
2 There are many measures of effects size.  The most commonly reported ES measures (especially in meta-analyses) 
are Cohen'd d, the Pearson correlation coefficient (r) and, for ANOVAs, the partial eta squared (hp

2; see Fritz, 
Morris, & Richler 2012).  Confidence intervals (CIs) are computed for a specific confidence level, say 95%. The 
interpretation of a 95% CI is "Were this procedure to be repeated on numerous samples, the fraction of calculated 
confidence intervals (which would differ for each sample) that encompass the true population parameter would tend 
toward 95%,"and NOT "There is a 95% probability that the population parameter lies within the CI." 
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 (5) the size of the sample (N for the total sample, or ni, for each group, i). 
 
 Decisions about all five of these factors result from social conventions in the academic 

community; thus, researchers are ultimately responsible for making and defending their 
decisions about these factors given the specific goals of their research. 

 
2. Before collecting data, researchers should determine the minimum effect size that is to 

be detected and what null hypothesis statistical test (NHST) will be used to detect the 
effect.  Although a heuristic set of effect sizes (small, medium, and large) is commonly used, 
expected effects sizes derive from the theories and empirical results of the research area 
addressed by an experiment.  Thus, there are no universal guidelines, although there are some 
general benchmarks (e.g., Simmons 2014), and insights about common research strategies 
(e.g., attenuating a known simple effect, Simonsohn 2014, and mediation analysis, Fritz, 
Kenney, & MacKinnon 2016, Weingarten & Hutchinson 2018). Most statistical packages 
have procedures that will compute the power (f) of a given NHST for specified total sample 
sizes and effect sizes (e.g., the GLMPOWER and POWER procedures in SAS). These same 
packages will also compute the total sample size required to provide (on average) a given 
level of statistical power.  Below are some examples the sample sizes needed to achieve f = 
.80 and f = .90 for different type of dependent measures, NHSTs, and effect sizes. 

 
TABLE 

Examples of Sample Sizes Needed for Desired Power and Effect Sizes 
 

F-ratio test for a main effect or interaction or linear contrast for a fixed effect, between subjects ANOVA 
model of a DV from a balanced factorial design that has normally distributed error. 

Effect Size r Cohen's d partial h2  Total Sample 
Size, f = .80  

 Total Sample 
Size, f = .90  

 .049 .100 .002                3,142                 4,206  
Small .098 .200 .010                   786                 1,052  

 .145 .300 .022                   352                    470  
 .191 .400 .038                   200                    266  

Medium .236 .500 .059                   128                    210  
Large .365 .800 .138                     52                      68  

      
Pearson chi-square test of the difference between proportions for two groups of equal sample size for a 
binary dependent variable. 

Effect Size r Group A Group B Total Sample 
Size, f = .80  

Total Sample 
Size, f = .90 

Medium .218 .20 .40                   128                    178  
Medium .204 .30 .50                   148                    202  
Medium .200 .40 .60                   154                    212  

      
Small .109 .25 .35                   518                    716  
Small .102 .35 .45                   592                    820  
Small .100 .45 .55                   618                    854  

      



3 

 

Likelihood ratio chi-square test of a single binary predictor (Prob(A) = Prob(B) = .5) in a binary logistic 
regression, possibly in the presence of one or more covariates that might be correlated with the tested 
predictor. Note that .45 vs. .55 is an odds ratio of 1.48 and .20 vs. .40 is an odds ratio of 2.67. 

Effect Size r Group A Group B Total Sample 
Size, f = .80  

Total Sample 
Size, f = .90 

Medium .218 .20 .40                   158                    211  
Medium .204 .30 .50                   187                    250  
Medium .200 .40 .60                   195                    261  

      
Small .109 .25 .35                   645                    864  
Small .102 .35 .45                   750                 1,004  
Small .100 .45 .55                   794                 1,063  

 
  
 A robust approximation for the sample size (N) required for p = .05 and  f = .90 is the simple 

formula dferror = 7.75/r2, where r is the effect size expressed as a correlation coefficient and 
N = dferror + 2 (Murphy, Myors, & Wolach 2014).  A more robust approximation for effects 
with dfeffect = k >1 (e.g., an ANOVA factor with k+1 conditions or a multiple regression 
model with k predictors is the simple formula dferror = (5.26 + 3.24 x sqrt[dfeffect) / partial h2, 
where partial h2 = SSeffect  / ( SSeffect + SSerror) and N = dferror + k + 1 (Murphy, Myors, & 
Wolach 2014).  The Figure below illustrates how effect size affects sample size using these 
approximations. 
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FIGURE 

 
 Based on the results shown in the Table and the Figure, a general rule of thumb is that a 

sample size of N = 200 should be "sufficient" for NHSTs with df = 1 to detect medium 
effect sizes (e.g., r = .2, d = .4, or partial h2 = .04).  Samples sizes in the range of 400 to 800 
are generally needed for small effect sizes (e.g., r = .1, d = .2, or partial h2 = .01), and 
"really" small effects require sample sizes between 1,000 and 10,000.  The reader is 
reminded that even at these sample sizes there is still a 10% to 20% chance that a valid 
effect will not be detected by a NHST. 

 
3. For all data, identify outliers and other anomalous observations (based on accepted, 

criteria that are unrelated to research hypotheses).  Virtually all methods of data analysis 
assume data are consistent with some "well-behaved" model of error; thus, anomalous 
observations decrease statistical power.  Anomalous observations should be omitted from 
statistical analyses, but the criteria used and the number of omitted observations should be 
fully reported.  

 
4. For ordinary least squares regression (OLS), when IVs are correlated, statistical power 

is reduced.  To see how statistical power can be increased for OLS regression analyses, 
consider the following. 
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observed Y  =  BY0.123...k + BY1.23...k X1 + BY2.13...k X2 + BY3.12...k X3  + ... + BYk.123...k Xk + e,  
where e ~ N(0, s2). 
 
predicted Y  =  BY0.123...k + BY1.23...k X1 + BY2.13...k X2 + BY3.12...k X3  + ... + BYk.123...k Xk. 
 
predicted z(Y)  =  bY1.23...k z(X1) + bY2.13...k z(X2) + bY3.12...k z(X3)  + ... + bYk.123...k z(Xk). 
 
Note that unstandardized regression coefficients, BYi, are related to standardized coefficients, 
bYi, as follows: BYi  =  bYi SD(Y) / SD(Xi) . 
 
t = b / SE(bYi.12...(i)...k), where 
 

 SEbYi.12...(i)...k  = 𝟏"𝑹𝒀
𝟐

𝑵"𝒌"𝟏
𝟏

𝟏"𝑹𝒊
𝟐, 

N = total number of observations, 
k = number of independent variables 
𝑹𝒀𝟐 = the variance in Y accounted for by the independent variables, 
𝑹𝒊𝟐 = the variance in Xi accounted for by the other independent variables. 
 

 
 It is easy to see from these equations that, all else equal, statistical power is increased (i.e., t 

is increased when the effect is "true") when  
 

(1) b is increased or B is increased,  
(2) residual error, (1 - RY

2), is decreased,  
(3) N is increased,  
(4) k is decreased, and  
(5) Ri

2 is decreased.  
 
Multicollinearity problems result when Ri

2 becomes large (see Cohen, Cohen, West and 
Aiken 2003). 

 
5. When some IVs are arithmetic functions of "simple effect" variables that are also 

included in the regression (e.g., polynomials and interactions), the coding of the simple 
variables is very important.  Mean-centered, effects-coding of the simple variables 
increase statistical power for regression coefficients because this reduces the correlations 
between IVs (i.e., Ri

2; see Irwin & McClelland 2001), even though RY
2 is not affected.   

 
6. For between-subjects data (i.e., the error structure for each observed DV is assumed to be 

i.i.d. normal, and all IVs are assumed to be fixed effects), ANOVA is a special case of 
regression in which main effects and interactions are modeled as "bundles" of effects-coded 
IVs in such a way that (for balanced designs) the correlations between variables in different 
effect bundles are exactly zero.  Thus, all else equal, statistical power is maximized in 
balanced ANOVA experimental designs compared to unbalanced designs and designs in 
which independent variables are measured rather than manipulated (with random assignment 
to conditions) because Ri

2 is structurally equal to zero.  Also, when measured covariates are 
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included, random assignment implies that the expected value of Ri
2 is zero for the 

manipulated factors. 
 
 
7. To better understand statistical power for between-subjects ANOVA, note that 
 
 F[df(effect), df(error)] = MS(effect)/MS(error)  
 
     = [SS(effect)/ df(effect)]/[ SS(error)/ df(error)]. 
 
 This formula is central to understanding ANOVA & ANCOVA, especially how modeling 

decisions such as using contrasts and covariates can potentially add statistical power.  Two 
important properties of the F test for a balanced between-subjects design analyzed by a 
fixed effect ANOVA are that (1) MS(error) is the same for all effects (i.e., main effects, 
interactions, and linear contrasts) and (2) the "complexity" if the factorial design usually does 
not have a large effect on needed total sample size (N) because SS(error) should not be 
affected by the design and df(error) = N - k - 1, and k + 1 is the degrees of freedom for the 
full ANOVA model (e.g., df(2x3) = df(A) + df(B) + df(AxB) + df(INT) = 1 + 2 + 2 + 1 =6).  
Thus, if a 2x2 design requires N=200, then a 2x3 design for the same level error, effect sizes, 
and df(effect) will require N=202 because k has increased by 2. 

 
8. Most approaches to analyzing repeated measures data involves choosing alternative 

estimators for MS(error).  It is generally the case that repeated measures (i.e., within-
subjects) experimental designs provide greater statistical power than between-subject 
designs because the main effects of subjects do not contribute to MS(error), as they do in a 
between subject design.  Of course, many experimental manipulations are pragmatically 
difficult to implement within-subjects (e.g., due to carry-over or demand effects). 

 
9. For unbalanced designs or when covariates are used, Type I SS and Type III SS are not 

equivalent, and Type III SS (which removes all shared variance from the analyzed effects) is 
generally preferred, unless there is a theory-driven rationale for sequential analysis (i.e., Type 
I SS).  Type III SS is also used in OLS regression models.  Type III SS tests have less 
statistical power than Type I SS tests, but it is usually hard to defend the use of Type I SS.  

 
10. Omnibus F-tests, by themselves, are almost always conceptually too forgiving because 

they test the null hypothesis that the observed pattern of means for a main effect or 
interaction contains differences that are greater than what would be expected if all conditions 
had the same true means.  Almost all theoretically interesting hypotheses are much more 
specific about the predicted pattern of means and may or may not be tested by a single main 
effect or interaction.  Always check the observed pattern of means to be sure it is consistent 
with theory.  Whenever possible, test a specific linear contrast that represents the predicted 
pattern.  Linear contrasts have greater statistical power than omnibus tests because 
df(effect) = 1 and, if valid, the predicted pattern of means will account for most of the 
systematic variance in the omnibus test (i.e., MS(contrast)/1 > MS(omnibus effect) / 
df(omnibus effect)).  For within-subjects effects, a simple and robust test is to (a) compute a 
single number for each subject that represents the predicted pattern (however complicated) 
and then (b) test the mean across subjects against the expected value under the null 
hypothesis (usually zero). 
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11. Traditional ANOVA models are saturated in the sense that the within-cell sample means 

are perfectly predicted.  When there are unequal numbers of observations in each cell (i.e., an 
unbalanced design), least-squares marginal means are computed using these predicted cell-
mean values. Least-squares means usually better represent the population means than do the 
raw sample means. 

 
12. For experimental designs that have pretest and posttest observations as repeated 

measures, a simple between-subjects ANOVA of difference scores (sometimes called gain 
scores) is identical to repeated measures ANOVA.  However, a more general and statistically 
powerful model is to use the pretest measure to predict the posttest measure in the absence of 
a treatment effect.  This is usually done by using an ANCOVA model with the pretest 
measure as the covariate.  The covariate method is more statistically powerful than the 
difference-score method because it includes the difference score method as a special case 
(i.e., the coefficient of the pretest measure is 1).  In some cases, the conceptual 
interpretability of the differences score may outweigh the statistical advantage of the 
ANCOVA approach, however. 

 
13. Almost all within subjects experimental designs, must "control" for possible order 

effects using a Latin Square or some other fractional factorial design.  Such designs 
typically make the main effect of order uncorrelated with all other effects (and interactions) 
of interest.  However, some higher-order effects are necessarily confounded with order 
and/or each other. 

 
14. The traditional multivariate approach to repeated measures ANOVA (e.g., PROC 

GLM in SAS) is recommended for balanced experimental designs (especially when 
sample sizes are small) because the resulting F-tests are "exact."  In such models, each 
within-subjects effect (and its interactions with all between subjects effects) is tested using 
the interaction of the "residual" within-subjects effect with the between-subjects effects as 
the error term in an F-test.  For unbalanced designs, when there is missing data for some but 
not all conditions for some subjects, or when within-subjects covariates are to be used, a 
more general approach that incorporates a specific model of the within-subject variances and 
covariances (e.g., PROC MIXED in SAS; see Wolfinger and Chang 1998) is recommended 
(as long as sample sizes are reasonably large).  The F-tests are usually estimated by 
(restricted) maximum likelihood, and interpreting them requires some care.  This approach 
accommodates the unbalanced design and missing data much better than the traditional 
multivariate approach (and yields identical results for balanced designs), and it provides 
greater statistical power because is uses more data and explicitly models the error structure.  
However, the variance/covariance model must be taken seriously, and several conceptually 
plausible such models should be estimated before a final model is selected. 

 
15. When there are multiple dependent variables and it is desirable to correct for family-wise 

error (i.e., getting at least one measure significant by testing many measures), then sample 
sizes can be computed using a Bonferroni-corrected value for a (e.g., for a = .05 with 5 
measures, an a = .01 should be used).  However, it should be noted that the Bonferroni 
correction is very conservative, emphasizing Type I over Type II errors, and in that sense, 
reduces statistical power somewhat.  More statistically powerful methods include the 
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Bonferroni/Holm sequential test procedure (Holm 1979; also see Rosebaum 2008, Small, 
Volpp, and Rosenbaum 2011), and the MANOVA-based method developed by Lehmacher, 
Wassmer, and Reitmeir (1991).  An alternative that imposes a somewhat weaker constraint 
on Type I error is the widely used false discovery rate (FDR) test developed by Benjamini 
and Hochberg (1995). 
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